Sex differences in postsynaptic sweating and cutaneous vasodilation.

نویسندگان

  • Daniel Gagnon
  • Craig G Crandall
  • Glen P Kenny
چکیده

The current study aimed to determine whether a peripheral modulation of sweating contributes to the lower sudomotor thermosensitivity previously observed in females during exercise. We examined dose-response relationships in 12 males and 12 females to incremental doses of acetylcholine (ACh) and methylcholine (MCh) for sweating (ventilated capsule), as well as to ACh and sodium nitroprusside (SNP) for cutaneous vasodilation (laser-Doppler). All drugs were infused using intradermal microdialysis. On a separate day, potential sex differences in the onset threshold and/or thermosensitivity of heat loss responses were assessed during progressive increases in mean body temperature elicited by passive heating. Increases in sweating as a function of increasing concentration of ACh (P = 0.008) and MCh (P = 0.046) significantly differed between males and females. Although the concentration eliciting 50% of the maximal sweating response did not differ between sexes for either agonist (P > 0.1), maximum values were lower in females in response to ACh (0.34 ± 0.12 vs. 0.59 ± 0.19 mg·min(-1)·cm(-2), P = 0.04) and MCh (0.48 ± 0.12 vs. 0.78 ± 0.26 mg·min(-1)·cm(-2), P = 0.05). This observation was paralleled by a lower thermosensitivity of sudomotor activity in females during passive heating (1.29 ± 0.34 vs. 1.83 ± 0.33 mg·min(-1)·cm(-2)·°C(-1), P = 0.03), with no significant differences in the change in mean body temperature at which onset of sweating occurred (0.85 ± 0.19 vs. 0.67 ± 0.13°C, P = 0.10). No sex differences in cutaneous vasodilation were observed in response to ACh and SNP, as well as during passive heating (all P > 0.1). These findings provide direct evidence for a peripheral modulation of sudomotor activity in females. In contrast, sex does not modulate cutaneous vasodilation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

iNOS-dependent sweating and eNOS-dependent cutaneous vasodilation are evident in younger adults, but are diminished in older adults exercising in the heat.

Nitric oxide synthase (NOS) contributes to sweating and cutaneous vasodilation during exercise in younger adults. We hypothesized that endothelial NOS (eNOS) and neuronal NOS (nNOS) mediate NOS-dependent sweating, whereas eNOS induces NOS-dependent cutaneous vasodilation in younger adults exercising in the heat. Further, aging may upregulate inducible NOS (iNOS), which may attenuate sweating an...

متن کامل

Intradermal administration of ATP augments methacholine-induced cutaneous vasodilation but not sweating in young males and females.

Acetylcholine released from cholinergic nerves is a key neurotransmitter contributing to heat stress-induced cutaneous vasodilation and sweating. Given that sympathetic cholinergic nerves also release ATP, ATP may play an important role in modulating cholinergic cutaneous vasodilation and sweating. However, the pattern of response may differ between males and females given reports of sex-relate...

متن کامل

Wearing graduated compression stockings augments cutaneous vasodilation but not sweating during exercise in the heat

The activation of cutaneous vasodilation and sweating are essential to the regulation of core temperature during exercise in the heat. We assessed the effect of graduated compression induced by wearing stockings on cutaneous vasodilation and sweating during exercise in the heat (30°C). On two separate occasions, nine young males exercised for 45 min or until core temperature reached ~1.5°C abov...

متن کامل

Current concepts of active vasodilation in human skin

In humans, an increase in internal core temperature elicits large increases in skin blood flow and sweating. The increase in skin blood flow serves to transfer heat via convection from the body core to the skin surface while sweating results in evaporative cooling of the skin. Cutaneous vasodilation and sudomotor activity are controlled by a sympathetic cholinergic active vasodilator system tha...

متن کامل

K+ channel mechanisms underlying cholinergic cutaneous vasodilation and sweating in young humans: roles of KCa, KATP, and KV channels?

Acetylcholine released from cholinergic nerves is involved in heat loss responses of cutaneous vasodilation and sweating. K(+) channels are thought to play a role in regulating cholinergic cutaneous vasodilation and sweating, though which K(+) channels are involved in their regulation remains unclear. We evaluated the hypotheses that 1) Ca(2+)-activated K(+) (KCa), ATP-sensitive K(+) (KATP), an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of applied physiology

دوره 114 3  شماره 

صفحات  -

تاریخ انتشار 2013